Synchronization and Propagation of Global Sleep Spindles

نویسندگان

  • Rafael Toledo Fernandes de Souza
  • Günther Johannes Lewczuk Gerhardt
  • Suzana Veiga Schönwald
  • José Luiz Rybarczyk-Filho
  • Ney Lemke
چکیده

Sleep spindles occur thousands of times during normal sleep and can be easily detected by visual inspection of EEG signals. These characteristics make spindles one of the most studied EEG structures in mammalian sleep. In this work we considered global spindles, which are spindles that are observed simultaneously in all EEG channels. We propose a methodology that investigates both the signal envelope and phase/frequency of each global spindle. By analysing the global spindle phase we showed that 90% of spindles synchronize with an average latency time of 0.1 s. We also measured the frequency modulation (chirp) of global spindles and found that global spindle chirp and synchronization are not correlated. By investigating the signal envelopes and implementing a homogeneous and isotropic propagation model, we could estimate both the signal origin and velocity in global spindles. Our results indicate that this simple and non-invasive approach could determine with reasonable precision the spindle origin, and allowed us to estimate a signal speed of 0.12 m/s. Finally, we consider whether synchronization might be useful as a non-invasive diagnostic tool.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interactions between core and matrix thalamocortical projections in human sleep spindle synchronization.

Sleep spindles are bursts of 11-15 Hz that occur during non-rapid eye movement sleep. Spindles are highly synchronous across the scalp in the electroencephalogram (EEG) but have low spatial coherence and exhibit low correlation with the EEG when simultaneously measured in the magnetoencephalogram (MEG). We developed a computational model to explore the hypothesis that the spatial coherence spin...

متن کامل

Characterizing sleep spindles in 11,630 individuals from the National Sleep Research Resource

Sleep spindles are characteristic electroencephalogram (EEG) signatures of stage 2 non-rapid eye movement sleep. Implicated in sleep regulation and cognitive functioning, spindles may represent heritable biomarkers of neuropsychiatric disease. Here we characterize spindles in 11,630 individuals aged 4 to 97 years, as a prelude to future genetic studies. Spindle properties are highly reliable bu...

متن کامل

Eeg Sleep Spindle Processing with Independent Components Analysis

Sleep spindles are bursts of rhythmic activity characterized by progressively increasing, then gradually decreasing amplitude, present predominantly in stages 2, 3 and 4 of the sleep electroencephalogram (EEG). Topographic analyses of sleep spindle incidence suggested the existence of two distinct sleep spindle types, “slow” and “fast” spindles at approximately 12 and 14 Hz respectively. There ...

متن کامل

Global Finite Time Synchronization of Two Nonlinear Chaotic Gyros Using High Order Sliding Mode Control

In this paper, under the existence of system uncertainties, external disturbances, and input nonlinearity, global finite time synchronization between two identical attractors which belong to a class of second-order chaotic nonlinear gyros are achieved by considering a method of continuous smooth second-order sliding mode control (HOAMSC). It is proved that the proposed controller is robust to m...

متن کامل

A Novel Visualization Method for Sleep Spindles Based on Source Localization of High Density EEG

Equivalent dipole source localization is a well-established approach to localizing the electrical activity in electroencephalogram (EEG). So far, source localization has been used primarily in localizing the epileptic source in human epileptic patients. Currently, source localization techniques have been applied to account for localizing epileptic source among the epileptic patients. Here, we p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016